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Abstract. The patterns of pigment on the shells of mollusks provide one of the most beautiful and
complex examples of animal decoration. Recent evidence suggests that these patterns may arise from
the stimulation of secretory cells in the mantle by the activity of the animal's central nervous system.

We present here a mathematical model based on this notion. A rather simple scheme of nervous

activation and inhibition of secretory activity can reproduce a large number of the observed shell

patterns.

INTRODUCTION

The geometrical patterns found on the shells of mol-

lusks comprise some of the most intricate and colorful

patterns found in the animal kingdom. Their variety is

such that it is difficult to imagine that any single mecha-

nism can be found. Adding to their mystery is the dis-

turbing fact that, since many species hide their pattern in

the bottom mud, or beneath an opaque outer layer, it is

doubtful they could serve any adaptive function. Perhaps

these v^onderful patterns arise as an epiphenomenon of

the shell secretion process. This may account for the ex-

treme polymorphism exhibited by certain species—a phe-

nomenon characteristic of traits shielded from selection.

Several authors have attempted to reproduce some of

these patterns using models that depend on some assumed

behavior of the pigment cells in the mantle that secrete

the color patterns (Waddington & Cowe, 1969; CowE,
1971; Wansher, 1972; Herman & Liu, 1973; Herman,
1975; Lindsay, 1982a, b; Wolfram, 1984; Meinhardt,
1984). These models have generally been of the "cellular

automata" variety, and the postulated rules were chosen

so as to give interesting patterns, rather than to correspond

to known physiological processes (Waddington & Cowe,
1969; Lindsay, 1982a, b; Wolfram, 1984). In the most

recent attempt, Meinhardt (1984) modeled the growing

edge of the shell as a line of cells subject to activator-

inhibitor kinetics and a refractory period. He was able to

obtain a variety of shell-like patterns, suggesting that an

activator-inhibitor mechanism is likely to be involved in

the actual process.

Recently, Campbell (1982) proposed a novel expla-

nation for the shell patterns. He reasoned that the pigment

cells of the mantle behaved much like secretory cells in

other organisms; that is, they secreted when stimulated by

nervous impulses. Therefore, the shell patterns could be

a recording of the nervous activity in the mantle. Because

the phylogeny of mollusks is well represented in the fossil

record, the implications of this view for the study of the

evolution of a nervous system are obvious.

Building on Campbell's notion, and the suggestive sim-

ulations of Lindsay, Meinhardt, and Wolfram, we have

constructed a model for the shell patterns based on nerve-
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Figure 1

Three fundamental classes of shell pigment markings on Bankivia fasciata: a, longitudinal bands; b, incremental

lines; c, oblique stripes.

stimulated secretion of the mantle epithelial cells. This

model differs from previous models in at least one impor-

tant aspect: it depends on the "nonlocal" property of nerve

nets. That is, because innervations may connect secreting

cells that are not nearest neighbors, the possibility of co-

operative, long-range interactions is present. This greatly

enlarges the pattern-generating repertoire over nearest-

neighbor models, and has the virtue of relating directly to

the anatomy of the mantle. Despite its simplicity, the mod-

el is remarkably successful in mimicking a wide variety

of shell patterns.

The paper is organized as follows. First, we catalog a

number of regularities in the shell pattern that bear on

the neural hypothesis. In particular, those phenomena that

implicate a global organizer and preclude strictly local

interactions. Second, we sketch the model equations and

discuss their behavior. Third, we present patterns gener-

ated by simulations of the model and compare them to

actual shell patterns. Fourth, we discuss some experi-

ments the model suggests and some generalizations of the

model. The Appendices contain the mathematical details

of the model and a discussion of how it relates to other

models of shell patterns.

OBSERVATIONS ON SHELL PATTERNS

The variety of shell patterns is so enormous that it appears

that any attempt to classify them will inevitably leave out

many special cases. However, we do not hope to explain

all of the patterns; rather, we seek to model the global

features shared by all patterns in a restricted class. In

particular, we shall focus mostly on the patterns exhibited

by Nenta turrita and Bankivia fasciata (Figures 1, 2, 3).

These animals exhibit a representative variety of shell

patterns from which we can draw some inferences.

Many pigment patterns of gastropod shells are com-

posites of three basic types of patterns: (a) longitudinal

bands that run perpendicular to the lip of the shell, (b)

incremental patterns arranged parallel to the growing shell

edge, and (c) oblique patterns that run at an angle to the

lines of the shell. Some mollusk taxa have more specialized

types of patterns, such as the circular eye-spots on some

cowry shells, or the intricate tent-like patterns on cone

shells. Species differ in the categories of patterns that they

display. Nenta turrita shells are always dominated by

oblique patterns without longitudinal bands, whereas oth-

er members of the genus have shells with bands as well
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Figure 2

a, an incremental alternation in zebra stripes across the entire whorl o[ Bankiuia Jasciata; b, simultaneous termination

of stripes in B. fasciata.

as modified oblique lines. Shells of Bankivia Jasciata are

highly polymorphic, with various combinations of these

pattern types, as illustrated in Figure 1.

Longitudinal bands require only simple developmental

controls. They could result from a mosaic mantle in vs^hich

regions continuously deposit pigment, along with shell,

separated by mantle zones that do not synthesize pigment.

In general, the number and position of bands appears to

be a genetic characteristic of the species, or of the individ-

ual in a polymorphic species. A second possibility—which

we shall illustrate with the model—is that the band width

and spacing are characteristic of the neural activity in the

mantle. The two mechanisms are not mutually exclusive,

as we shall discuss. Banding indicates that variation can

be a permanent {e.g., programmed) feature of the mantle

edge.

Incremental markings have several sources. Some ap-

pear to result from haphazard physiological stresses or

environmental factors that temporarily affect the activities

of the mantle as a whole. In addition, some species of

snails (other than the ones we shall consider here) show

regular periodic incremental shell patterns, indicating that

they are programmed in a deterministic and cyclic man-
ner. One of the most important incremental features seen

on shells of the two species we have chosen for analysis

are varices: time periods during which shell synthesis was

halted (Figures 2, 3). In general, mollusks do not produce

shell continuously, but go through cyclic periods of shell

building (producing about one-third to one-half whorl of

shell in the case of Bankivia fasciata), followed by "rest"

periods during which no shell is secreted. Shell patterns

often are reorganized at these major interruptions in shell

synthesis, and many sculptured shells produce flamboyant

ridges or spines along varices.

Oblique patterns are the most intricate, and have the

most implications for our theoretical model. They imply

that the activities involved in pigment secretion are coor-

dinated laterally and proceed dynamically across the man-
tle. For example, the oblique lines shown in most of the

shell illustrations in this paper represent a patch or do-

main of secretory activity that sweeps across the mantle,

eventually migrating to its edge. These mobile domains of

activity in the mantle behave in a variety of ways to pro-

duce the diverse appearance of the patterns.

EVIDENCE IN FAVOR OF LONG-RANGE
COORDINATION OF PATTERNS

The neural network model we propose here allows for

interactions and coordination beyond nearest neighbors.

As we shall demonstrate in the next section, this gener-

alization enormously enlarges the possible types of pat-

terns over previous models, which employ short range, or

"nearest neighbor" interactions. What evidence do we have

that pigment secretion is indeed a neurally controlled pro-

cess? We can offer no direct experimental support, for we
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Figure 3

Abrupt reorganization of patterns on shells of Nenta turrita (a), and after a break in a shell (b).

have not been able to find any anatomical studies of man-
tle innervation patterns nor of secretory cell physiology.

Therefore, aside from the general observation that secre-

tory cells in most organisms are influenced by neural ac-

tivity, we can offer only the following indirect evidence in

support of the neural activation hypothesis of shell pat-

terns.

Global reorganizations. At a varix, a shell pattern

may become systematically and simultaneously reorga-

nized across an entire shell (c/. Figures 2a, b), sometimes

into an entirely different sort of pattern (Figure 3a). A
variety of new patterns may arise in this manner, rather

than arising locally and propagating as a wave across the

shell. Such changes in the "state" of the pattern can also

be initiated by a break in the shell (Figure 3b). It is hard

to see how such local perturbations could have such global

effects by means other than nervous activity.

It should be noted that physiological and (or) environ-

mental factors can influence the entire mantle simulta-

neously. Indeed, it has been demonstrated that changes in

diet can alter not only the color of the pattern, but the

pattern itself (D. Lindberg, personal communication). This

fact does not argue for or against the neural hypothesis,

for it is relatively common for dietary factors to affect

nervous activity, as well as other physiological systems.

However, because diet and other environmental factors

affect the pattern formed on a shell, there must be some

physiological mechanism that relates the two. That is,

there must be some mechanism whereby a systemic effect

allows two separated regions of mantle tissue to manifest

coincidental patterning. The two main avenues for trans-

mitting stimuli from the environment to the mantle cells

are soluble chemical factors (especially hormones) and

nervous connections. Both may modulate patterns, but in-

fluences that differentially afTect discrete parts of the man-
tle simultaneously seem more plausibly mediated by the

nervous system.

Entrainment of lines. Shells in which oblique lines

become entrained in the middle of a longitudinal band

also suggest coordination of pattern across sizable dis-

tances, measured in cell diameters. A particular example

of this is the shell in Figure 4a, on which a band appears

spaced equidistant from the neighboring bands.

Termination of lines. On the shell in Figure 4b three

oblique lines terminated anomalously at about the same

time. These events occurred in regions of shell separated

by uninterrupted oblique bands. If these changes were due

to a signal that propagated from one locale to another,

that signal would have to have migrated cryptically past

the unaffected domains in the mantle. The simpler inter-
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a, appearance of a band spaced equidistantly between adjacent bands; b, simultaneous termination of several

separated zebra stripes without noticeable concurrent alteration of the stripes in between.

pretation is that the three separate areas were acted upon

by a signal that could be conveyed to multiple local regions

simultaneously.

Blotching. A polymorphism (not otherwise described

here) among Bankivia fasciata shells is blotching (Figure

5). On blotched shells areas of pigmentation abruptly dis-

appear or appear incrementally across large blocks of shell.

Alternatively, various segments of the mantle can be af-

fected simultaneously by blotching. Also, for some blotched

shells the zone of pigment deposition did gradually spread

along the mantle, indicating that blotching can be con-

trolled in a variety of ways.

Global appearance of patterns. On some shells a gen-

eral type of pattern gradually develops across the entire

mantle, but with no indication that the change sweeps

across the mantle; the saw-tooth pattern in Figure 6 il-

lustrates this phenomenon.

Checkerboard patterns. (Figure 7) It is possible to

create a checkerboard pattern from two sets of colliding

waves that propagate by strictly local interactions. How-
ever, it is remarkable that the checkerboard as a whole

can stay in register without drifting in alignment. This

synchronicity implies that a substantial segment of the

mantle cycles back and forth between an active and in-

active state in precise coordination. Adjacent subzones

switch states of activity simultaneously, but in opposite

directions.

THE NEURAL MODEL
In this section we present a qualitative description of the

shell pattern model. The mathematical discussion is given

in the Appendices. The model we shall present here is the

simplest possible neural model, and we do not expect to

reproduce every shell pattern, even those observed on the

two species we have selected for study. However, the mod-
el is capable of producing sufficiently diverse patterns that

we consider it a reasonable first approximation; we shall

suggest a number of improvements which will enlarge the

class of patterns, but at the expense of computational sim-

plicity.

BIOLOGICAL ASSUMPTIONS OF
THE MODEL

The basic assumption of the model is that the secretory

activity of the epithelial cells that generate shell patterns

is regulated by nervous activity. Specifically, we assume

that the secretory cells are enervated from the central gan-

glion and secrete or not as they are activated and inhibited

by the neural network that interconnects them with the

ganglion. Although arguments in favor of this hypothesis

were presented above, the issue can only be settled em-
pirically, and experiments are under way to test the neu-

ral hypothesis directly. Figure 8 shows a schematic of the
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Explanation of Figures 5 to 7

Figure 5. Blotched patterns on Bankivia fasciata shells. Figure 7. Checkerboard patterns on Bankivia Jasciata.

Figure 6. Sawtooth patterns on Nerita turrita.

mantle and the secreting cells (Emberton, 1963; Kapur

& Gibson, 1967; Neff, 1972; Kniprath, 1977).

The specific assumptions that underlie the model are:

(1.) Cells at the mantle edge secrete in intermittent {e.g.,

daily) bursts of activity. At the beginning of each

session the mantle aligns with the previous pattern

and extends it by a small amount. This alignment

process probably depends on the ability of the mantle

to sense (taste) the pigmented and (or) non-pigment-
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Diagram of the anatomy of the mantle region.

ed regions from the previous period of secretion.

Equivalently, a section of pigmented shell laid down
during the previous period will stimulate the mantle

neurons locally to continue the pattern.

(2.) The secretion during a given period depends on two

factors:

(a) the neural stimulation, S, from surrounding re-

gions of the mantle.

(b) the buildup of an inhibitory substance, R, within

the secretory cell.

(3.) The net neural stimulation of the secretory cells is

the difference between excitatory and inhibitory in-

puts from surrounding tissue.

We incorporate these assumptions into the model as fol-

lows.

Secretion of Pigment Depends on Current

Neural Activity

Consider a line of secretory cells whose position along

the mantle edge is located by the coordinate x (Figure 9).

Let

Piix) — the amount of pigment secreted by a cell at x

during the time period t (e.g., one day).

A,{x) = the average activity of the mantle neural net at

position x on the mantle edge during one secretion

period, t.

Ri{x) = the amount of inhibitory substance produced by

cells at location x in day t.

S[P] = the net neural stimulation at location x during

period t. This will depend on sensing the pigment

secreted during the previous period, P,_^{x).

Then the equation governing the neural activity in the

mantle during period t + 1 is related to the pigment se-

cretion during period t by the equation

A,,,(x) = S[P,{x)] - R. [1]

Equation [1] says that the average neural activity,

A,+ ^{x), at location x on the mantle during day t + 1

depends on the net neural stimulation at that location,

which is stimulated by sensing the previous day's pigment

S[Piix)]- In the absence of stimulation, this nervous activ-

ity decays as the inhibitory substance R,ix) builds up. The
inhibitory substance, R, builds up as pigment, P, is man-
ufactured, and is degraded at a constant rate (6 < 1):

R,^,(x) = yP,ix) + 6R,(x) [2]

Finally, we assume that secretion of pigment will only

occur if the mantle activity is above a threshold value, A*:

P,{x) =H{A - A*) [3]

where H(A — A*) is a threshold function for pigment

secretion: it is zero for A < A*, and one for A > A*.

Equations [1] and [2] describe how the activity. A, and

refractory substance, R, evolve in time; having computed

A, the actual pigment secretion is given by [3]. In the

computer simulations we have simplified the model even

further by incorporating equation [3] into equation [1],

and writing equations for P directly (c/. Appendix A).

This modification makes little diflference in the computed
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Diagram of the model; MPC, mantle pigment cells; PCN, pigment cell neurons; MNN, mantle neural net; CG,
central ganglion; r, receptor cells sensing pigment laid down in time period t; P, pigment cells secreting pigment

in time period t + 1; E, excitatory neurons; I, inhibitory neurons.

patterns, but is somewhat simpler to simulate. Figure 9

shows a schematic of the model's structure.

Neural Activity Depends on the Difference Between

Excitatory and Inhibitory Stimulation

Next, we must model the process of neural stimulation

that regulates the secretion of the pigment. We regard the

net stimulation of a cell at x to be the difference between

excitatory and inhibitory stimulations from nearby cells.

The situation is illustrated in Figure 10a: a cell located

at a position x on the mantle edge received excitatory

inputs and inhibitory inputs. The inhibitory signals are

generally more "long range" than the excitatory inputs;

that is, the mantle edge exhibits the property of short-

range excitation and long-range inhibition characteristic

of neural nets (Berne & Levy, 1983; Ermentrout &
Cowan, 1979). Moreover, we assume that the response

of a nerve cell is a saturating function of its inputs; that

is, both excitation and inhibition are sigmoidal functions

of their arguments, as shown in Figure 10b. The mathe-

matical form of the neural stimulation term we have em-

ployed is given in the Appendix.

When these assumptions are incorporated into the mod-
el equations there results a set of functional difference

equations that determines the pigment pattern, Pt{,x) (c/.

equations [Al, 2]). In Appendix A we perform a linear

analysis on these equations. This gives some idea of the

repertoire of patterns the model can generate, and pro-

vides a guide to the numerical simulations presented be-

low.

The Model Parameters

Any model contains adjustable parameters, and equa-

tions [l]-[3] contain several. These parameters fall into

two categories: (A) those controlling the shape of the neu-

ral stimulation function, and (B) the production and deg-

radation rates of the inhibitory substance. Each parameter

corresponds to a definite physiological quantity, and so is

measurable, at least in principle.

Neural parameters. The neural stimulation function,

S, in equation [1] contains the curves for excitation, in-

hibition, and firing threshold shown in Figure 10. Each

of these functions must be described by formulae that con-

tain parameters to control their shapes. The functions we
have employed in our simulations are described in Ap-

W„(x-x')

(a)

(b)

Figure 10

Diagram of the neural influence function and threshold

function.
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Simulations of: a, vertical stripes of constant width; b, vertical stripes of variable width; c, horizontal stripes.

pendix A; however, experience has shown that the qual-

itative predictions of the model depend only on the general

shapes of the functions, not on their particular algebraic

form.

Cellular parameters. Each secretory cell is character-

ized by its production rate of pigment under neural stim-

ulation and its production and degradation of refractory

substance, R. The production rate of pigment is controlled

entirely by the neural stimulation, S, and so no new pa-

rameters are required to describe it. The refractory sub-

stance, however, requires the two parameters: 7 to regu-

late the growth rate of R, and 5 to control the decay rate

of R.

Even though each of the model parameters has a direct

physiological interpretation, with enough parameters one

might feel that any variety of patterns is possible. How-
ever, this is not true. For a fixed neural structure, there

are but two adjustable parameters: 7 and b. Varying the

neural interactions involves changes in their shape-con-

trolling parameters, and analysis and simulation studies
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production of R
Figure 12

7-5 parameter plane showing domain of stripes and obliques.

show that the resuhing patterns can be classified into a

relatively small number of types. Within each distinct type,

variations of the parameters merely alter the relative di-

mensions of the pattern, and not its qualitative appear-

ance. However, parameter variations that exceed certain

thresholds, cause the pattern to shift not just its scale, but

its qualitative type as well. This "bifurcation" behavior

will be discussed further below.

PATTERNS GENERATED BY
THE MODEL

In this section we describe the patterns generated by the

neural model. We shall present numerical simulations of

the neural model which mimic certain patterns observed

on the shells of Bankwia fasciata and Nenta turnta.

Basic Patterns

Equations [l]-[3] constitute the simplest possible model

for a neural net; consequently, we cannot hope to repro-

duce all of the known shell patterns. However, we can

reproduce all of the basic patterns; moreover, it is easy to

see how the model can be elaborated to incorporate a

wider variety of patterns. We shall briefly discuss these

modifications here, and present a more detailed study in

a subsequent paper.

The three fundamental patterns exhibited by Nenta
turrita and Bankwia fasciata are longitudinal bands, incre-

mental lines, and oblique stripes (Figure 1). The param-

eter values that realize these patterns are given in Table

2 in Appendix A. Qualitatively, the conditions that yield

these patterns are as follows.

Vertical stripes (Figures la, 11) occur when refrac-

toriness is very low and the neural influence functions are

strong and thresholds small. There are two mechanisms

for producing stripes: one is similar to the Turing mech-

anism in diffusion-reaction models. That is, short-range

activation creates a laterally spreading zone of activity,

which is eventually quenched by the longer range inhib-

itory activity. This produces stripes whose width is con-

stant, as shown in Figure 11a. The stripe width is a func-

tion of the parameters (being roughly the width of the

activation-inhibition zone), and the locations of the stripes

are determined by the width of the domain (i.e., the size

of the mantle). A different mechanism produces stripes of

unequal widths, as shown in Figure lib. It is also possible

to produce vertical stripes by simply activating certain

regions of the mantle permanently, so that secretion is

always turned on. Only experiments can distinguish be-

tween these two possibilities.

Horizontal stripes, or incremental lines (Figures lb,

lie), are produced when the refractory parameters are

small and thresholds are high. This results from a syn-

chronized, or homogeneous oscillation along the entire

mantle (not to be confused with the incremental pattern

associated with the episodic nature of shell deposition).

Diagonal stripes, or zebra bands (Figures Ic, 2, 3, 4),

are characterized by very low thresholds and gradual cut-

offs. These arise as waves of activity propagate along the

mantle. If the neural structure is constant, the presence of

oblique stripes or vertical bands depends on the values of

the two parameters controlling the refractoriness, y and

8. Figure 12 shows the parameter domain that character-

izes each pattern type.

The direction of the stripes produced by the model de-

pends on the parameter values. However, downward ori-

ented stripes {i.e., away from the apex of the shell) are

more common in Bankwia fasciata and Nenta turnta and

exhibit far fewer irregularities. Moreover, upward-di-

rected stripes appear to be more unstable, reverting to

downward stripes after a short progression. This points

to a consistent inhomogeneity in the mantle. Indeed, su-

perimposing a parameter gradient {e.g., in h and [or] 7)

on the model equations strongly biases the direction of

striping in one direction. Interestingly, the direction of

stable striping is in the same direction as the spiral of the

shell. Because shell patterns are associated with shell con-

struction, this could indicate a physiological (anatomical)

correlation between the direction of shell growth and the

pattern direction, such as an asymmetry in the muscle

mass of the mantle. The direction of the zebra stripes can

switch at certain times, especially—but not exclusively

—

at a varix.

Divaricate patterns. Zebra patterns may reverse di-

rections giving a herring-bone pattern. We have used the

observation that synchronous switching of the direction of

stripes indicates a global coordinating mechanism for the

pattern. In terms of the model, switching of the direction

of obliques involves a jump in a parameter value. The
model does not address what the underlying signal for
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Figure 13

a, divaricate patterns on Bankivia fasciata showing open and closed V's; b, simulation of Vs.

such an event is, but does provide a mechanism for gen-

erating a coordinated reversal of the pattern orientation

(Figure 13). Lines that converge as the shell grows will

be called "closed V's"; those that diverge as the shell grows

are "open V's." Pattern reversals that produce a "closed

V" frequently extend beyond the intersection a small

amount, forming a "snout" on the V. This is also a feature

of the simulations, because a collision of two obliques

admits a small overlap of the activation region extending

beyond the collision apex. Note also that the upward stripes

are shorter than the downward stripes, suggesting a man-

tle inhomogeneity. This has been suggested previously by

Wrigley (1948).

Wavy stripes (Figure 14). These are characterized by

very sharp cutoffs of the excitatory and inhibitory thresh-

olds, small thresholds, and large turnover of refractory

substance (7, 6 ~ 1). Note the "shocklike" discontinuities

in the stripes that the simulation reproduces.

Streams (Figure 15) are irregular striped patterns that

occur when the sharpness of the cutoff is quite large and

refractoriness is persistent (6 ~ 0.8).

Interaction Patterns

In addition to the basic patterns, additional designs

emerge from the interaction of the basic patterns. Typi-
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Figure 14

a, divaricate patterns (wavy bands) on Nenta turnta; b, simu-

lation.

cally, when two diagonals collide one of several things

happen.

Checks (Figures 7, 16) occur when the range of neural

interaction is large. As the sharpness of the excitatory and

inhibitory thresholds increases, the checks become more
stable and persistent.

On some shells, colliding diagonals pass through one

another. This cannot happen in our two-variable model.

In order to obtain this effect one must add a third variable;

this implies that the secretory activity of the mantle is

associated with more than one pigment, or that the mantle

can sustain several coexisting and independent patterns of

neural activity. We will deal with this phenomenon in a

subsequent publication.

Tents. These patterns are not observed on Nenta turnta

or Bankwia fasciata, but are common on the cone shells.

We include them here because the model also can produce

a wide variety of tent patterns, examples of which are

illustrated in Figure 17. These patterns most easily arise

when the concentration of refractory substance, R, is very

low (6, 7 <s 1), the nonlinearities are extremely sharp,

and the range of neural interaction small. In this limit the

model resembles the "nearest neighbor" cellular automata

models of Wolfram (1984) and others (c/. Appendix C).

Indeed, the tent patterns appear to arise from more lo-

calized interactions ("nearest neighbors" in the cellular

automata models) than the other patterns described herein.

In this regard, the models of Wolfram are able to mimic
a remarkable variety of these kinds of "local" patterns,

and the model presented here can do little better in pro-
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ducing tents. However, where tent patterns are overlain

with other patterns, which is frequently the case, then the

local nature of the automata models is insufficient (cf.

Wrigley, 1948).

One point worth mentioning about the tent patterns is

the apparent role that stochastic processes play in their

evolution. In the neural model we have not included such

stochastic features—although it would be trivial to do so

—

because we were primarily interested in the patterns that
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Figure 15

a, wandering stripes on Bankivia Jasciata; b, simulation.

could be produced in a deterministic fashion. In a subse-

quent study we shall demonstrate the role of stochastic

influences on the structure of the patterns.

DISCUSSION

We have constructed a model for shell patterns based on

the hypothesis that the secretion of pigment is stimulated

by neural activity. Our model postulates the simplest pos-

sible neural interactions: local activation and lateral in-

hibition, such as is found in the retina. Despite its sim-

plicity the model is able to reproduce a variety of observed

shell patterns, such as bands, diagonal stripes, and various

divaricate interference patterns that arise from the inter-

action of propagating bands.

The type of pattern generated by the model depends on

the nature of the neural interaction, its range, persistence.
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and threshold for activation. Very short-range interactions

and strong nonlinearities produce tentlike patterns char-

acteristic of the cone shells, and which resemble the pat-

terns generated by the automata models of Lindsay and

of Wolfram and his coworkers. Longer range interactions

produce interference patterns, such as checks and wan-

dering streams seen on Bankivia Jasciata and other shells.
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Figure 16

Checkerboard patterns.

We have mapped out many, but not all, of the possible

patterns that arise from the neural hypothesis. The model

can be elaborated in several directions. For example, what

is the eflTect of postulating a more complex neural struc-

ture (such as long-range activation)? Many shells secrete

several kinds of pigments; including more than one pig-

ment into the neural model would increase enormously

the possible patterns it could generate, including the char-

acteristic of stripes passing through one another—a com-

mon phenomenon that the simple neural model presented

here cannot reproduce. It is clear from many studies {e.g.,

Wrigley, 1948) that the mantle is not a homogeneous

tissue as we have assumed here. By adding to the model

spatial gradients and periodic variations in the parameters

(e.g., refractoriness or density of innervation) a far greater

variety of patterns can be produced than from the homo-

geneous mantle we have assumed here. We shall present

simulations of more complex mantle structures elsewhere.

In addition to spatial variations, a variety of transition

patterns can be produced if parameter values evolve slow-

ly as the simulation proceeds. These are distinct from the

discontinuities and V-patterns that may involve a sudden,

global perturbation of a system parameter. In particular,

shell size is an important determinant of pattern. Small,

or young animals will typically exhibit less complex de-

signs, because fewer stripes will "fit" into a smaller do-

main. Moreover, as shell size (i.e., domain size in the

model) increases with growth, stripes widen until a

threshold is reached, whereupon another stripe interca-

lates, a phenomenon commonly observed, especially in

Nerita turrita. Such sudden shifts in behavior triggered by

smoothly varying a parameter are typical of models with

strong nonlinear terms (May & OsTER, 1976;

GUCKENHEIMER et ai, 1976).

The cowries have a mantle that imprints a pattern over

a large expanse of shell, rather than just at the growing

edge. To model this, one must employ a two-dimensional

version of the neural model. Two-dimensional automata

models with very local interactions can produce patterns

that bear a striking resemblance to those found on the

map cowrie (N. Packard & S. Wolfram, personal com-

munication), and preliminary analysis of the neural model

indicates that the eye-spot pattern found on many cowries

can be easily obtained.

The neural model also touches on the problem of shell

construction, for as Wrigley (1948) and others have

pointed out, there is a correlation between the color pat-

terns and the geometrical features of the shell {e.g., pig-

ments may concentrate in the grooves between ridges, and

spines tend to be colorless). This is hardly surprising,

because the same mantle that deposits the color is busy

building the shell. However, this correlation between pat-

tern and form suggests that the neural model might be

extended to investigate the diversity of shell shapes and

their mode of construction.

If the neural hypothesis is correct, the shell is a hard-

copy record of the neural activity in the mantle. The fossil

record for these creatures is as complete as for any known
lineage. What can such an electroencephalogram tell us

about the evolution and ecology of moUusks? We shall not

speculate here, but the model suggests an explanation for

the diversity of patterns found on the same species in

different environments, and the similarity of different

species in the same environment. Moreover, the enormous

diversity of pattern within certain species may reflect the

fact that the patterns in those species are not visible during

the animal's life. Being invisible to selection generally leads

to increased genotypic variance, and so we should expect

the color patterns in such species to be highly polymor-

phic.

The usefulness of any model stems not only from its

specific predictions and its ability to unify disparate ex-

perimental observations, but also from its fertility in sug-

gesting further experiments. If the neural hypothesis is

correct experiments that intervene with mantle neural ac-

tivity, without disrupting shell construction, need to be

devised. Perhaps the topical application of neuroactive

substances such as xylocaine, lysergic acid, or various kinds

of neurotransmitters can provide information. Probably

electrophysiological measurements will interrupt mantle

activity, but perhaps the neural connections between pig-

ment cells can be explicated in sufficient detail to deter-

mine the range of neural interactions characteristic of each

pattern type. It is a rich field for neurobiology and anat-

omy which will have a direct impact on larger issues of

evolution and adaptation.
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Figure 17

a, tent patterns characteristic of olive snails {e.g., tent olive or

royal purple olive (Oliva porphyria); b, tent patterns character-

istic of the textile or courtly cones—these patterns differ from

(a) by slightly longer range neural interactions.

Finally, we should mention the issue of the uniqueness

of the model. It would be gratifying if we could claim that

our model can reproduce the observed patterns better than

all competing models; however, this is not the case. Using

a model based on diffusion and reaction of chemical mor-

phogens, H. Meinhardt has produced simulations that are

equally as convincing in reproducing the shell patterns as

the neural model. The reason is clear: one can model the

phenomenon of local activation and lateral inhibition

characteristic of neural nets in a variety of ways. Any
number of diffusion-reaction mechanisms can produce this

effect by a slowly diffusing autocatalytic reaction that is

quenched by a fast diffusing inhibitor molecule (Mein-

hardt, 1982). Even the mechanical models that OsTER
et al. (1985) have employed to model the regular patterns

of microvilli on cells can be viewed as a mechanical im-

plementation of this neural-like property. Therefore, we
are left with the disappointing conclusion that it may be

quite difficult to infer mechanism from pattern alone, be-

cause several quite distinct cellular mechanisms can pro-

duce identical patterns. Thus the issue of whether the

patterns on mollusk shells arise from neural activity as

we have suggested here will be settled only by experi-

ments. Theory can provide only a shopping list of possible

mechanisms.
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APPENDICES

A. The Model Equations

In this Appendix we give the complete mathematical

expression for the model equations given in the text, as

well as the functional forms employed in the numerical

simulations.

The model consists of the three diflference-integral

equations

R,Ax) = yP,{x) + 5RM
P,{x) = HiA - A*)

[2]

[3]

where < 7 < 1 is the rate R increases and < 6 < 1 is

its degradation rate.

We can further simplify the model by assuming that

the pigment secretion, P, is simply proportional to the

activity, A, and let the function S take care of the threshold

for secretion. This does not affect the patterns signifi-

cantly, and is somewhat easier to treat numerically and

theoretically. Thus the equations we shall deal with are

P.Ax) = S[P,{x)] - R, [4]

R,,M = yP,{x) + 5R,{x) [5]

The neural stimulation function, S[P,{x)] in equation

[4] is composed of excitatory and inhibitory eflfects. Note

that the pigment secretion on day t + 1 can depend only

on the excitation during day t + \; however, according to

the assumptions of the model, each day's pattern of exci-

tation is stimulated by "tasting" the previous day's pig-

ment pattern. We can safely assume that the time con-

stants for neural interactions are much shorter than those

of shell growth, so that we need deal only with the daily

average, or steady state firing rate of the neurons in the

mantle. Therefore, we define the following functionals:

Excitation:

^Z + lC^) = We{x' - x)PXx') dx' [6]

Inhibition:

/,+,U)= \
lV;ix' -x)P,(x')dx' [7]

A,,,ix) = S[PXx)] - R, [1]

Here the kernels We(x' — x) and Wi{x' — x) weight

the effect of neural contacts between cells located at po-

sition x' and a cell at x; they effectively define the con-

nectivity of the mantle neuron population. In general, the

inhibitory kernel, W,(x' — x) is broader than the exci-

tatory kernel, We{x' — x)\ i.e., activation has a shorter

range than inhibition, fi is the domain of the mantle; for

most shells this is a finite interval, but may be circular in

the case of mollusks such as limpets and planar in cowries.

The particular connectivity functions we have em-

ployed in our simulations are:

ly, = for
I X I > (7„ J = E,I

W^ = q\2P - (1 - cos{irx/a)P] [8]

for
I X I

< (jj, J
= E, I

where qj is chosen so that

Wjix) dx = aj, J = E,II [9]
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Table 1

Neural influence function parameters

ttf = amplitude of the excitatory influence function.

a, = amplitude of the inhibitory influence function.

o-£ = range of the excitatory influence function,

ff; = range of the inhibitory influence function.

P£ = sharpness of the excitatory influence cutoflf, or the "flat-

ness" of the influence function.

p, = sharpness of the inhibitory influence cutoff.

Firing threshold functions

v^ = steepness of the excitatory cutoff (nonlinearity).

V, = steepness of the inhibitory cutofT.

6^ = location of the excitatory threshold; i.e., the midpoint of

the sigmoidal curve (threshold).

6, = location of the inhibitory threshold.

Refractory parameters

7 = production rate of refractory substance.

5 = decay rate of refractory substance.

The shape of the connectivity functions is controlled by

p: for p very small the Wj are sharply peaked, for p large,

the Wj become nearly rectangular. In our simulations p
is in the range of 4-8. The range for lateral inhibition is

made greater than the excitation by choosing C/ > a^, and

since the local excitation strength is generally greater than

the inhibition, we choose «£ > a/.

The responses of the secretory cells to neural stimula-

tion are assumed to be sigmoidal functions of their inputs:

S[P,{x)] = SAE,.M] - S,[I,,M] :io]

For simulation purposes, we have employed the follow-

ing function for both S^ and S/

The parameter c, controls the sharpness of the nonlin-

earity, and dj the location of the threshold.

Thus the raw parameter list consists of the 12 quan-

tities;

[«£, «i, «^E, f^i, Pe, Pi. "e, ''i, ^e, ^b 7, ^]

This list can be reduced to nine because some parameters

enter only as products, and some may be rescaled. Table

1 summarizes the model parameters.

B. Analysis and Simulation of the Model

A linear stability analysis of the model equations gives

some idea of the patterns the model will generate. There-

fore, we proceed as follows.

The pair of equations [4, 5] are equivalent to the single

second order equation

P,« = 5[P,„] + 6P,,, - yP, - dS[P,] [12]

Figure Al

a, the unit circle and the stability triangle on the coefficient (a,

b) plane; b, dispersion relation X(k) for spatial instability; c,

trajectories for each type of bifurcation.

where we have suppressed the dependence on x for no-

tational simplicity.

Let P„ be a homogeneous equilibrium, i.e.,

P„ = S[P,] + 8P„ - {yP, + 5S[P,])

Po = S[P„]
1 - 6

[13]

[14]1-6 + 7

If we shift the sigmoid S so that ^'^(O) = -S/O) = 0, then

we can linearize about P„ = to obtain the linear differ-

ence equation:

P,,2 + L,P,^, + bP, - [yP, + 6L„(P,)] = [15]

where L„(.) is the linear (convolution) operator

L,[u]{x) = S'e{P„) We{x' - x)u{x') dx'
Ja

- S',iP„) W,{x' - x)u{x') Ax', [16]

where S'j{P„) are derivatives of Sj.
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(a)

(b)

Figure A2

a, the shapes of S(x) and L(k); b, the dispersion relation.

On a periodic domain of length L {e.g., the limpet), the

eigenfunctions for L„ are exp(2ir!nx/L), n = 1, 2, . . . ; on

a finite linear domain these are approximate eigenfunc-

tions, since the domain size, L, is much greater than the

range of the connectivity functions W.
The characteristic equation for the spatially homoge-

neous system is obtained by substituting P,ix) ~
\'exp(2inkx/L) into the linearized equation;

\- + {L*ik) + 6)X - [7 + 5L*ik)]

= X- + a(k)X + b{k) =

Here

L*{k) - S'APo)^Eik) - S',iPJW,{k)

[17]

[18]

where the W^ are (close to) the Fourier cosine transforms

of the W-.

W^ik) I cos{2-Kkx/L)Wj{x) Ax [19]

The spatially homogeneous solution is stable if and only

if the roots of the characteristic equation lie within the

unit circle on the complex plane; |X| < 1 for every k = 0,

1,2,.... This condition can be plotted on the coefficient

plane (a, b), as shown in Figure Ala, where stability

requires that a and b lie within the shaded triangle.

Spatial instability requires that (i) the homogeneous

solution be stable; |X|(^ =0) < 1, and (ii) there exists a

finite range of unstable modes; |A|(^) > 1 for < ^, <
^ < ^2 < °°- That is, the dispersion relation \{k) should

look qualitatively as shown in Figure Alb.

Such an instability can arise in three qualitatively dif-

ferent ways; as one of the model parameters is varied the

unstable eigenvalue can pass out of the unit circle through

+ 1, —1 or at a complex value (Figure Ale). Which one

of these instabilities occurs depends on which parameter

is varied and on the shape of the connectivity kernels, W^.

The neural connectivity function, W{x) we have em-
ployed is the usual "short-range excitation/long-range in-

hibition" type shown in Figures 9 and 10. The linear

operator L*{k) is essentially the Fourier transform of W{x).

By the properties of the Fourier transform, L*{k) has the

shape shown in Figure A2a. Because only positive values

of k are physically relevant, the dispersion relation looks

qualitatively as sketched in Figure A2b.

The three paths to spatial instability shown in Figure

Ale correspond to violating the following three inequali-

ties;

(a) Bifurcation through +1 v/ill occur if L*{k) >
(1 — 7)/6 (path a in Figure Ale). This is a so-called

"equilibrium" bifurcation because in the spatially homo-

geneous case (k = 0) such a bifurcation creates a new
equilibrium point (c/. May & OsTER, 1976; Guckenhei-
MER et al., 1976). When A > this creates a stationary

spatial pattern of regularly spaced stripes as shown in

Figure A3a.

(b) Bifurcation through —1 will occur if L*{k) <
— (1 + 7/(1 +5)) (path b in Figure Ale). From Figure

A2b we see that this can occur only at k = 0, so that

homogeneous instability results. (This can only happen in

this model for the kernel shown providing 6^ s> d,, since

we have assumed that a^ > a,.) The pattern resulting

from this bifurcation consists of fine horizontal stripes, as

shown in Figure A2b.

(c) Bifurcation through X = e'" {6 =5^ 0, tt) occurs if

L*{k) > 1 + 7/(1 - b) (path c in Figure Ale). This

generates periodic spatio-tem.poral patterns, as shown in

Figure A3c {e.g., stripes and checks).

Note that (1 - y)/b < 1 + 7/(1 - 6) if and only if

6 > 1 — Vl^ Thus -hi bifurcations occur first when b <
1 — \/y; otherwise the bifurcation is via a complex ei-

genvalue.

When 7 = 0, so that the refractory substance cannot

build up, the model can take a particularly simple form.

If we make p large, and o-^, a, equal, and v large, then

the model is approximated by the rule;

p,^M = 1 iie,<r P,{x + x') Ax' <

otherwise [20]

This is essentially a continuous space analog of Wol-

fram's Class-3 cellular automata rule (Wolfram, 1984).

This type of rule leads to "chaos" and the "tent" patterns.

The linear analysis was employed to guide the numer-
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yyy ^// ^y
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II
(o) (b)

Figure A3

(c)

a, spatial pattern arising from +1 bifurcation; b, spatial pattern arising from —1 bifurcation; c, spatial pattern

arising from complex bifurcation.

ical simulations. The model equations were converted to

a single second order difference equation and the integrals

approximated by

J W{x' - x)P{x') dx' 2m^,(,-j)/NJ^j [21]

;=0

Generally, N was taken to be 64, although when un-

usual patterns were encountered N was set to 128 or 256

to check that they were not numerical artifacts. Initial

conditions were random, or small regions of the domain

were excited. Typically, long transients generated com-

plicated patterns which gradually simplified as the tran-

sients damped out.

Table 2

Fig. Be e, O;; «/ C/; 0-/ 7 5 r

11a 0.0 6 8 0.1 0.2 0.0 0.0 1

116 5.5 0.22 15 0.32 0.1 0.15 0.0 0.0 8

11c 4.5 15 0.5 0.1 0.12 0.05 0.6 8

146 1 100 5.0 4.0 0.05 0.2 0.8 0.4 2

156 4.5 0.32 15 0.5 0.1 0.15 0.1 0.8 8

16 8.8 6.6 0.1 0.2 0.4 0.6 1

17a 3 4 8.0 4.0 0.1 0.2 8

176 5.5 5.5 10 4 0.1 0.2 0.3 0.2 8

C. Alternative Formulations

The behavior of the model equations can be illuminated

by examining their continuous time limit. If we subtract

P and R from both sides of [4] and [5], respectively, we
obtain

P,,, - P, = S[P,] - R,- P, [22]

/?„, - R,^{b- \)R, + yP, [23]

By an appropriate choice of time scale, t, we can divide

R=0

Figure A4

Phase plane for the diflferential equations [A24] and [A25].
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both sides by t and replace the difTerences by derivatives

to obtain:

dP

dt
= S[P] - R - P

^=(6- \)R +yP

[24]

[25]

Now let us examine the phase plane of this system at

a fixed X = x^. The operator S is sigmoidal in P, and so

the right-hand side is a cubic-shaped curve (a sigmoid

minus a linear term). The (P, R) phase plane is shown

in Figure A4; it is qualitatively similar to the FitzHugh-

Nagumo model for excitable media. That is, each volume

element is excitable, and the volume elements are spatially

coupled by the activation-inhibition operator W.
If only nearest neighbor cells interact inhibitorily, then

W can be expanded in a Taylor series about x, and only

lowest order terms retained. Then a familiar diffusion-

reaction model emerges:

dP d^P

at

[26]

[27]

where D is a diffusion coefficient that can be expressed

in terms of the expansion coefficients of the integrand.

If activation-inhibition is to be retained in the model,

then fourth order terms must be retained (odd order terms

dropping out by symmetry), and we obtain the biharmonic

diffusion-reaction system:

dP ^ d'P

dt dx^
D.

' dx^

d'~P

dx-
+ FiP, R)

f— (* \)R

[281

[29]

Here the negative sign in D, corresponds to short-range

activation, and the negative sign in D2 corresponds to long-

range inhibition.

A model quite similar to this was arrived at by J. Keen-

er (personal communication) by defining a net neural fir-

ing ra\.e,f{x, t) according to the equation

^f-l p Ibf) + W{x' - x)f{x') Ax' [30]

where W{x — x') is the activation-inhibition kernel shown
in Figure 9. Coupling to the secretion is obtained by de-

fining the secretion rate to be a bistable function:

dP

at
F{PJ) [31]

where F{P, f) is an S-shaped curve whose intercept is

regulated by /. By expanding the convolution to fourth

order, this model can also be reduced to a biharmonic

diffusion-reaction model:

dr

dt
-z),-4 - ^^t^t4 + (aP

OX"- ax^ ox^
bf)

dP

dt
FiPJ)

[32]

[33]

Somewhat different approaches were employed by

Waddington & CowE (1969), Meinhardt (1984), and

Wolfram (1984). They modeled the shell patterns by an

automata wherein the activation-inhibition effect was rep-

resented by nearest neighbor interactions via diffusion.

Meinhardt's model employed two substances with differ-

ent diffusion constants (Z), > D^). He obtained some of

the same patterns we obtain here by assuming that each

cell of the automata could periodically fire and become

refractory for a while. In a more recent simulation, Mein-
hardt and Klingler (to appear) included longer range in-

teractions by allowing morphogens to diffuse beyond near-

est neighbors. These simulations resemble ours and it

appears that most patterns can be created by either mech-

anism. However, it is not clear how the diffusion-reaction

model handles the problem of pattern alignment between

episodes of shell secretion, whereas this is intrinsic to the

neural model. Wolfram's simulations mimic to a remark-

able extent the "tent" patterns observed on many cone

shells. However, his rules were rather arbitrary, and have

no obvious physiological interpretation. The neural net

model, in the limit of short-range interactions and sharp

threshold functions, reduces to the automata model, and

can also reproduce the tent patterns.

All of these models have a similar structure: a locally

excitable activator-inhibitor system that is coupled spa-

tially to nearby points. In order to obtain spatial patterns,

the activation-inhibition is essential. Moreover, it appears

that many of the patterns depend on the long-range (i.e.,

beyond nearest neighbor) interactions characteristic of

neural nets. Also, the episodic nature of the secretion pro-

cess dictated our choice of a discretized model in time; this

feature also appears essential to the formation of certain

pattern types. In a subsequent publication we shall inves-

tigate a broader class of neural models, including kernels

with long-range activation and two-dimensional mantles,

such as are found in cowries.


